A New Approach for Data Clustering Based on PSO with Local Search
نویسندگان
چکیده
Data clustering is a popular approach for automatically finding classes, concepts, or groups of patterns. The term “clustering” is used in several research communities to describe methods for grouping of unlabeled data. These communities have different terminologies and assumptions for the components of the clustering process and the context in which clustering is used. This paper looks into the use of Particle Swarm Optimization (PSO) for cluster analysis. In standard PSO the non-oscillatory route can quickly cause a particle to stagnate and also it may prematurely converge on suboptimal solutions that are not even guaranteed to local optimal solution. In this paper a modification strategy is proposed for the particle swarm optimization (PSO) algorithm and applied in the data sets. This paper provides a method for particles to steer clear off from local stagnation and the local search is applied to improve the goodness of fitting. The effectiveness of this concept is demonstrated by cluster analysis. Results show that the model provides enhanced performance and maintains more diversity in the swarm and thereby allows the particles to be robust to trace the changing environment.
منابع مشابه
Tabu-KM: A Hybrid Clustering Algorithm Based on Tabu Search Approach
The clustering problem under the criterion of minimum sum of squares is a non-convex and non-linear program, which possesses many locally optimal values, resulting that its solution often falls into these trap and therefore cannot converge to global optima solution. In this paper, an efficient hybrid optimization algorithm is developed for solving this problem, called Tabu-KM. It gathers the ...
متن کاملImproved Automatic Clustering Using a Multi-Objective Evolutionary Algorithm With New Validity measure and application to Credit Scoring
In data mining, clustering is one of the important issues for separation and classification with groups like unsupervised data. In this paper, an attempt has been made to improve and optimize the application of clustering heuristic methods such as Genetic, PSO algorithm, Artificial bee colony algorithm, Harmony Search algorithm and Differential Evolution on the unlabeled data of an Iranian bank...
متن کاملA harmony search-based approach for real-time volt & var control in distribution network by considering distributed generations units
In recent decade, development of telecommunications infrastructure has led to rapid exchange of data between the distribution network components and the control center in many developed countries. These changes, considering the numerous benefits of the Distributed Generators (DGs), have made more motivations for distribution companies to utilize these kinds of generators more than ever before. ...
متن کاملA Hybrid Data Clustering Algorithm Using Modified Krill Herd Algorithm and K-MEANS
Data clustering is the process of partitioning a set of data objects into meaning clusters or groups. Due to the vast usage of clustering algorithms in many fields, a lot of research is still going on to find the best and efficient clustering algorithm. K-means is simple and easy to implement, but it suffers from initialization of cluster center and hence trapped in local optimum. In this paper...
متن کاملGenerating Optimal Timetabling for Lecturers using Hybrid Fuzzy and Clustering Algorithms
UCTTP is a NP-hard problem, which must be performed for each semester frequently. The major technique in the presented approach would be analyzing data to resolve uncertainties of lecturers’ preferences and constraints within a department in order to obtain a ranking for each lecturer based on their requirements within a department where it is attempted to increase their satisfaction and develo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer and Information Science
دوره 1 شماره
صفحات -
تاریخ انتشار 2008